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Abstract

We describe a probabilistic model for deriving, from the database of assigned chemical shifts, a set of random
coil chemical shift values that are ‘‘unbiased’’ insofar as contributions from detectable secondary structure
have beenminimized (RCCSu).We have used this approach to derive a set of RCCSu values for

13Ca and 13Cb

for 17 of the 20 standard amino acid residue types by taking advantage of the known opposite conforma-
tional dependence of these parameters. We present a second probabilistic approach that utilizes the maxi-
mum entropy principle to analyze the database of 13Ca and 13Cb chemical shifts considered separately; this
approach yielded a second set of random coil chemical shifts (RCCSmax-ent). Both new approaches analyze
the chemical shift database without reference to known structure. Prior approaches have used either the
chemical shifts of small peptides assumed to model the random coil state (RCCSpeptide) or statistical analysis
of chemical shifts associated with structure not in helical or strand conformation (RCCSstruct-stat). We show
that the RCCSmax-ent values are strikingly similar to published RCCSpeptide and RCCSstruct-stat values. By
contrast, the RCCSu values differ significantly from both published types of random coil chemical shift
values. The differences (RCCSpeptide)RCCSu) for individual residue types show a correlation with known
intrinsic conformational propensities. These results suggest that random coil chemical shift values from both
prior approaches are biased by conformational preferences. RCCSu values appear to be consistent with the
current concept of the ‘‘random coil’’ as the state in which the geometry of the polypeptide ensemble samples
the allowed region of (/,w)-space in the absence of any dominant stabilizing interactions and thus represent an
improved basis for the detection of secondary structure. Coupled with the growing database of chemical
shifts, this probabilistic approach makes it possible to refine relationships among chemical shifts, their
conformational propensities, and their dependence on pH, temperature, or neighboring residue type.

Introduction

The notion of what constitutes a ‘‘random coil’’
configuration in polypeptides has varied over time.

Flory’s isolated pair hypothesis (Flory, 1969)
suggested that the random-coil state of a peptide is
the one in which the / and w angles of each residue
are independent of the conformations of neighboring
residues. Although this notion appears suitable to
alanine peptides within a restricted region of /,w-
space, its general applicability is limited (Pappu
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et al., 2000). An alternative description of the
random-coil state as the well-defined reference state
in which no side-chain-side-chain interactions are
present (Shortle, 1996) neglects the intrinsic fold-
ing propensities of amino acids. A definition con-
sistent with the current notion of ‘‘random coil’’
would be: the state in which the geometry of the
polypeptide ensemble samples the allowed region of
(/,w)-space in the absence of any dominant stabi-
lizing interactions. The space sampled depends on
the amino acid, the solution conditions (such as
pH and temperature), and perhaps on the identity
of nearest neighbor residues. The single reported
‘‘random coil’’ state is the energy-weighted distri-
bution of the ensemble of conformational states
(Makowska et al., 2006). The above definition
captures the experimental observations both in
concept and quantitative results. It forms the basis
for the model proposed here.

Among available methods for characterizing
the random-coil state of peptides and small pro-
teins, the NMR chemical shift stands out as un-
iquely powerful. In particular, carbon chemical
shifts are known to be strongly dependent on
backbone torsion angles (Spera and Bax, 1991;
Iwadate et al., 1999). Random-coil chemical shift
(RCCS) values determined experimentally from
spectral analysis of short peptides (Bundi and
Wuthrich, 1979; Merutka et al., 1995; Wishart
et al., 1995; Schwarzinger et al., 2000) serve as the
basis for the determination of a ‘‘secondary
chemical shift’’, i.e., the experimental chemical
shift minus the random coil chemical shift. Sec-
ondary chemical shifts, in turn, have proven useful
as measures of protein secondary structure
(Wishart and Sykes, 1994).

The influence of the choice of RCCS values on
chemical-shift based protein secondary structure
identification has been evaluated by reference to
five different sets of RCCS standards, including
ones derived from experimental data and ones
derived from statistical analysis of the chemical
shift database (Mielke and Krishnan, 2004). On
the basis of their ability to predict known helical
and sheet content as a measure of superiority,
these authors identified two ‘‘best’’ sets of RCCS
standards, one determined from peptide chemical
shifts (here denoted by RCCSpeptide) (Schwarzinger
et al., 2000) and one derived statistically (here
denoted by RCCS struct-stat) (Lukin et al., 1997).
We address here questions of bias in these RCCS

standards and present a new way of looking at the
problem.

RCCSpeptide values typically are based on
chemical shifts of amino acids in short, glycine-
flanked peptides. Such peptides are too short to
form any structure that can be stabilized by pep-
tide H-bonds, and they do not have side-chain–
side-chain interactions. However, for the short
peptide GGAGG (pH 4.6, 20 �C), the polyproline
II (PII) conformation (a left-handed 31 helical
conformation occupied by collagen and peptides
containing proline with torsion angles / =)75�
and w =145�) is reported to dominate the
ensemble (Ding et al., 2003). In the presence of
the organic solvent 2,2,2-trifluoroethanol (TFE),
the predominant conformation of the pentamer
changes from PII to internally H-bonded c- or
b-turns (Liu et al., 2004). The model peptides
GG(A)nGG (n = 1–3) dominantly adopt the PII

conformation at lower temperatures, but transi-
tion into higher population of extended structure
content at higher temperatures (>40 �C) (Chen
et al., 2004). Alanine-based (AXA) tripeptides in
an aqueous solution have been shown to have
different conformational preferences depending on
the nature of X (X = A, D, E, G, V, L, M, K, S,
H, P, Y, W, or F) (Eker et al., 2004). Remarkably,
even a small alanine dipeptide (a single blocked
amino acid) has a PII conformational preference
(Mehta et al., 2004). Finally, pH effects on RCCS
values are an important consideration that has
been cumbersome to survey experimentally. The
experimental data used in determining the favored
experimentally derived RCCS standard (Schwarz-
inger et al., 2000) were collected at pH 2.3, far
from the pH at which most protein NMR data are
collected; this introduces significant bias in the
RCCS values for aspartate (pKa=3.8) and gluta-
mate (pKa=4.1) residues (Richarz and Wuthrich,
1978). Results of this kind suggest that intrinsic
conformational preferences and environmental
factors have a marked influence on RCCS values
derived from model peptides.

The alternative statistical approach uses infor-
mation from chemical shifts associated with
known structure to derive RCCS struct-stat values
from the chemical shifts of residues in a ‘‘coil li-
brary’’ consisting of residues that are neither helix
nor sheet (Wishart et al., 1991; Lukin et al., 1997;
Wang and Jardetzky, 2002). This approach suf-
fers from a number of problems. The a priori
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classification of chemical shifts by three states
(helix, sheet, and ‘‘other’’) may be an unsuitable
simplifying assumption; protein secondary struc-
tures can be classified into at least seven different,
but overlapping, categories besides random coil
(Kabsch and Sander, 1983). Furthermore, the
assignment of the mean value of the ‘‘other’’ (non-
helix, non-sheet) set to the RCCS value assumes
that its distribution is unimodal. Yet another dif-
ficulty is that some unfolded proteins cannot be
characterized by a Gaussian-distributed random
coil model (Fitzkee and Rose, 2004). Additional
potential problems with the statistical approach
arise from the limited quantity of chemical shift
data associated with proteins of known structure,
referencing problems (Zhang et al., 2003), and
possible effects of neighboring residues (Braun
et al., 1994; Schwarzinger et al., 2001).

We present here two novel probabilistic ap-
proaches for analyzing the database of assigned
protein chemical shifts without reference to known
structure. We show that sets of 13Ca and 13Cb

chemical shifts assigned to individual residue types
can be analyzed individually by a maximum en-
tropy approach to yield RCCSmax-ent values that
are quite similar to the RCCSpeptide and
RCCSstruct-stat values. An alternative probabilistic
model is to make use of additional information to
refine the database by removing chemical shifts
from residues determined to have significant heli-
cal or strand propensity on the basis of chemical
shift combinations. We show that unbiased ran-
dom coil chemical shift values (RCCSu) can be
derived for 13Ca and 13Cb by taking advantage of
the known opposite conformational dependence of
these parameters. In addition to providing values
that lead to more accurate identification of sec-
ondary structure from chemical shifts, the latter
model suggests an approach for further refining
our understanding of relationships between
chemical shifts and protein structure.

Methods and results

Our model for the ‘‘random coil’’ is the probabi-
listic one (described above) in which the geometry
of the polypeptide ensemble samples the allowed
region of (/,w)-space in the absence of any domi-
nant stabilizing interactions. The experimental
‘‘random coil’’ state is the energy-weighted distri-

bution of the ensemble of such conformational
states. If the conformational ensemble has no
preferential subset of states, then it is reasonable to
describe the ensemble in terms of a maximally
entropic symmetric distribution. On the other
hand, a maximally entropic symmetric distribution
would be unsuitable as a random coil reference if
individual amino acids have preferential states
arising from intrinsic stabilizing interactions; in
such a case, a different approach would be needed
to determine the properties of the distribution.

In order to illustrate the probabilistic model
and to underscore the influence of these assump-
tions on the results, we contrast two approaches to
computing RCCS values without reference to any
independent structural information. We first show
that a maximum entropy statistical interpretation
returns results ( RCCSmax-ent values) very similar
to experimentally reported RCCS values. Next, we
base the detection of the random coil state on
consensus from both 13Ca and 13Cb values. The
algorithm for the detection of the consensus signal
uses iterative, piecewise linear statistical regression
analysis to account for the structural propensities
and hence to yield unbiased RCCS values
(RCCSu).

We have applied both models to the analysis of
13Ca and 13Cb chemical shifts, because they are
influenced oppositely by helix and sheet and be-
cause they are relatively insensitive to sequence
effects, provided that the C-terminal residue is not
proline (Iwadate et al., 1999; Schwarzinger et al.,
2001). The opposite influence of helix and sheet on
13Ca and 13Cb chemical shifts makes it convenient
to examine the 13Ca)13Cb distributions. We could
have worked directly with 13Ca and 13Cb distribu-
tions, but the distributions are better resolved
when plotted against the chemical shift difference
13Ca)13Cb than against chemical shift alone. The
better resolved distributions make our estimates
more robust, but still allow the separate 13Ca and
13Cb distributions to be extracted.

Data set used

About 300 proteins in the RefDB (Zhang et al.,
2003) have assigned 13Ca and 13Cb signals. Because
these chemical shifts are considered most reliable
(Neal et al., 2003), they were downloaded and
used as the basis for the present study. These
RefDB values were filtered by LACS analysis
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(Wang et al., 2005) to remove outliers. We ex-
cluded three residue types: glycine (no Cb), cyste-
ine (not enough data), and proline (coil
dominated). For the reason stated above, we re-
moved chemical shifts from all residues followed
by proline; by doing so, sequence effects on
chemical shifts were comparable to the average
�0.1 ppm effects across all amino acids (Sch-
warzinger et al., 2001). The resulting number of
residues for each amino acid is shown in Table 1.

Maximum entropy analysis of random coil chemical
shifts

The customary approach to the analysis of NMR
chemical shifts is to categorize them by their sec-
ondary structure designation: helix, sheet, and
‘‘other’’ (non-helix, non-sheet). In this context, the
mean of chemical shifts in the ‘‘other’’ category is
reported as the random coil chemical shift. Our
approach was to examine the 13Ca)13Cb distribu-
tion of all chemical shifts in the database without
reference to their structural context. In the absence
of preferential states within the ‘‘random coil’’
population, a parsimonious description of the

13Ca)13Cb distribution would be the mixture of
three distributions. These three distributions
would comprise a maximally entropic center dis-
tribution that represents the ‘‘random coil’’
ensemble and two other distributions that arise
from the opposite movement of 13Ca and 13Cb

chemical shifts in response to different structural
states. Helices and sheets are the two well-known
structural regions with dominant stabilizing inter-
actions and account for most of the content of the
two outer modes of the 13Ca)13Cb distribution.
Note that we have not divided the chemical shifts
by their structural categories and that the outer
modes of the mixture may contain other structural
states. For a fixed variance, the Gaussian distri-
bution is ‘‘maximally entropic’’ (Shannon 1948),
and therefore is the least biased selection for a
distribution. The focus of our maximum entropy
approach is to obtain the properties of the center
mode of the Gaussian mixture representing ran-
dom coils; the additional modes represent states
(including helix and sheet states) that cannot be
accounted for by a single featureless Gaussian. To
find the mean of the random coil state, we opti-
mally fit the empirical distribution of the data to a

Table 1. ‘‘Random-coil’’ chemical shift values for common amino acids

Amino acid RCCSu
13Ca

(ppm)

RCCSpeptide
a13Ca

(ppm)

RCCSu
13Cb

(ppm)

RCCSpeptide
a13Cb

(ppm)

# of residues

in the database

PII preference
b(%)

Ala 51.9 52.5 19.9 19.1 2284 76.0

Asp 53.7 54.2 41.1 41.1 1969 55.3

Glu 55.9 56.6 30.8 29.9 2548 63.7

Phe 57.1 57.7 40.0 39.6 1236 53.0

His 55.5 55.0(56.3c) 30.9 29.0(30.8c) 626 52.7

Ile 60.9 61.1 38.2 38.8 1768 46.8

Lys 55.9 56.2 33.0 33.1 2408 59.1

Leu 54.2 55.1 43.1 42.4 2677 67.6

Met 55.2 55.4 33.0 32.9 693 62.3

Asn 53.1 53.1 38.6 38.9 1434 49.0

Gln 55.3 55.7 29.7 29.4 1314 56.1

Arg 55.8 56.0 30.8 30.9 1578 57.2

Ser 58.0 58.3 64.0 63.8 1865 63.2

Thr 62.4 61.8 69.6 69.8 1812 50.5

Val 62.3 62.2 32.4 32.9 2196 46.6

Trp 57.8 57.5 29.8 29.6 416 58.8

Tyr 58.2 57.9 38.9 38.8 1113 52.1

aChemical shifts of X in GGXAGG measured at pH 5 (Wishart et al., 1995).
bCalculated from a non-a-helix, non-b-strand, non-b-turn fragment database extracted from the PDB (Fleming et al., 2005).
cChemical shifts of X in GGXGG measured at pH 9 (Richarz and Wüthrich, 1978); the chemical shift referencing was adjusted
(Wishart and Case, 2001) to match those of the other RCCSpeptide values.
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mixture of three Gaussians, subject to the
requirement that the center distribution has max-
imum variance – i.e., is maximally entropic. The
algorithmic details concerning this approach and
figures showing the chemical shift distributions are
presented in the supporting information.

Consensus signal analysis of random coil chemical
shifts

The above considerations suggest that the follow-
ing two properties could be used as an initial step
in further refining the random coil chemical shifts:
(1) d13Ca and d13Cb will shift away, possibly in
different directions, from the true or unbiased
random coil chemical shift (RCCSu) values
whenever the conformation deviates from pure
random coil; and (2) d13Ca, d13Cb and
[d13Ca)d13Cb] all reach their true random coil
values under the same conditions. Experimental
results for alanine in small peptides support our
first assumption and show that d13Ca can vary
from 52.77 to 51.53 ppm, and d13Cb can vary from
19.34 to 21.18 ppm, under conditions that yield
different conformational preferences (Mehta et al.,
2004). The second assumption appears reasonable
and is validated, as discussed below, by the
agreement of our results with existing experimental
data.

To incorporate our desired properties into a
computational framework, we could pursue a
number of approaches, including the extension of
the maximum entropy model to account for more
modes and possibly asymmetric distributions.
However, a model we had used earlier to demon-
strate the relationship between secondary chemical
shifts (Dd13Ca, Dd13Cb, Dd1Ha, or Dd13C¢) and
(Dd13Ca ) Dd13Cb) by using a piecewise linear
function (Wang et al., 2005) turned out to be ro-
bust and efficient. The model is described by the
equations,

Y ¼ kaXþOa ifX � 0
kbXþOb ifX � 0

�
ð1Þ

where, X ¼ ðDd13Ca � Dd13CbÞ is a reference-
independent variable, and Y denotes the reference-
dependent values of Dd13Ca;Dd13Cb;Dd1Ha or
Dd13C. Ka and Kb are the slopes for the coil-helical
and sheet-coil regions, respectively. Oa and Ob are
Y-intercepts and report the value of the reference
offset; ideally equal to zero in the absence of a

reference error. We earlier used this model, in
combination with RCCS values from the literature
(Wishart et al., 1995; Wishart and Case, 2001), as
a means for detecting possible referencing offsets
in sets of assigned NMR chemical shifts without
the need for structural information (Wang et al.,
2005). We named this approach ‘‘LACS’’ for
Linear Analysis of Chemical Shifts.

To address the computational aspects of
refinement for RCCS values, we have turned the
LACS analysis around. We start with a database
of chemical shifts, RefDB (Zhang et al., 2003) that
have been reference-corrected on the basis of
known three-dimensional structure, and treat the
RCCS as the unknown. Thus we proceed under
the assumption that the input data have been
independently verified and properly referenced.
This assumption enables us to use the linear
analysis of 13Ca and 13Cb chemical shifts according
to our model to optimize an initially chosen RCCS
value. Note again that, although we maintain the
notion of three dominant modes with unknown
conformational distributions, we avoid the divi-
sion of chemical shifts into three discrete subsets
representing helix, sheet, and coil.

We restate Eq. (1) with equations that describe
the relationship between d13Ca, d13Cb and
(d13Ca ) d13Cb),

YaðXÞ ¼ kaXþOa if X � Rc

YbðXÞ ¼ kbXþOb if X � Rc

Rc ¼ YaðXÞ � YbðXÞ if X ¼ Rc

8<
: ð2Þ

In the above equations, X=(d13Ca ) d13]Cb), and
Ya and Yb denote d13Ca and d13Cb, respectively; Ka

and Kb are the slopes for the coil-helical region for
Ca and sheet-coil region for Cb, respectively; Oa

and Ob are Y-intercepts; and Rc is the unknown
that represents the chemical shift difference be-
tween 13Ca and 13Cb in the random coil state,

Rc ¼ d13Ca
randomcoil � d13Cb

randomcoil ð3Þ

If Rc is known, the two lines represented by Eq. (2)
can be fitted to the data to obtain parameters Ka,
Kb, Oa, and Ob (Figure 1). In our case, Rc is un-
known so that Eq. (2) is solved by an iterative
procedure to yield Rc. Data for the 13Ca and 13Cb

chemical shifts of valine (plotted against
d13Ca ) d13Cb in Figure 1) illustrate the approach.
The upper line, representing the first line in Eq. (2),
is the linear fitting of the points with 13Ca >Rc,
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and the lower line, second line in Eq. (2), is the
linear fitting of the points with 13Cb <Rc. The
above two fittings are based on a given Rc value,
which is just a rough estimation and will be eval-
uated by iterations. With fitted lines and Rc value,
the new Rc value can be estimated from the posi-
tion where the vertical distance (d13Ca

random

coil ) d13Cb
random coil) between these two fitted

lines is equal to the old Rc value. To make this
clearer, the inset of Figure 1 plots the vertical
distance between the two fitted lines (solid line) as
a function of (d13Ca) d13Cb); the new Rc value is
obtained from the point where the solid line
crosses the diagonal dashed line. By repeating the
above fitting process with new Rc values, a con-
verged Rc value is acquired after several iterations.
Once the converged Rc value has been determined,
the RCCSu values for 13Ca and 13Cb are obtained
from the ordinates of its intersection with the two
lines (Figure 1).

Computational procedures of the consensus model

For computational purposes, the initial value of Rc

(Eq. (3)) can be selected randomly, but for com-

putational convenience, we used the RCCS values
for 13Ca and 13Cb determined experimentally from
the chemical shifts of GGXAGG peptides at 25 �C
and pH 5 (Wishart et al., 1995). We used a ran-
dom sampling procedure in order to avoid possible
biasing of the resulting RCCS values by misas-
signments or by incorrectly referenced proteins in
RefDB. In each step of the iteration, 80% of the
data points were randomly selected, and the mean
value of Rc obtained in ten runs was carried to
next iteration. In addition, we used a ‘robust
analysis’ procedure (Holland and Welsch, 1977) to
ensure stable regression results. This method iter-
atively computes a set of weights for data points
from the least squares algorithm, with the weights
at each iteration calculated by applying a carefully
selected function to the residuals from the previous
iteration. The weights assign a lower significance
to features of the data set, called outliers, which
significantly deviate from expected values. The
results are consistent with standard least squares
regression when no outliers are present and are
practically insensitive to outliers when they are
present in the input data.

Convergence was rapid; for example, the values
for 13Ca and 13]Cb of alanine and valine converged
after a single iteration (Figure 2). The standard
deviations for Rc in the ten runs are shown as
vertical bars in Figure 2.

To further test the robustness of the method for
deriving RCCSu values, the sampling ratio was
varied from 90% to as low as 30%. For each
amino acid, 10 runs were carried out at various
sampling ratios, and the standard deviations in Rc

following convergence (considered to be complete
after 5 iterations) were plotted against the sam-
pling ratio (Figure 3). The standard deviations for
tryptophan and histidine, for which only limited
data are available (416 tryptophan residues and
626 histidine residues), increased rapidly with the
decreasing sampling ratio. For the most abundant
residues (A, D, E, I, K, L, N, Q, R, S, T and V),
the standard deviation was around 0.1 ppm, even
when only half of the data were sampled. The
remaining small variation can be explained by ef-
fects of referencing, mis-assignments, sequence,
and pH (discussed below). Other residues exhib-
ited larger standard deviations than expected from
their abundance in the database. For example, the
deviation for histidine (626 residues) increases
much faster than that for methionine (693 resi-

Figure 1. Chemical shifts (ppm) of valine residues from the
adjusted RefDB database: for each residue 13Ca and 13Cb are
plotted as a function of (d13Ca ) d13Cb). The solid lines
represent the results of linear regression analyses for data from
the coil-helical region as represented by 13Ca and the extended-
coil region as represented by 13Cb. For each (d13Ca ) d13Cb)
value, we determined the vertical distance between two solid
lines (one such line is shown as the dashed line in the figure).
The length of the dashed line represents Rc. The inset shows the
intersection between the solid line (vertical distance vs.
(d13Ca ) d13Cb)) and the dashed line ((d13Ca ) d13Cb) vs.
(d13Ca ) d13Cb)).
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dues). As discussed below this anomaly arises from
bias caused by pH differences.

Comparison of RCCSu values with those derived
from small peptide chemical shifts

Table 1 compares the 13Ca and 13Cb RCCSu values
derived from ‘‘adaptive LACS’’ analysis (taken as
average values from iterations 5–10) with a set of
RCCSpeptide values (Wishart et al., 1995). Differ-
ences between the RCCSu and RCCSpeptide values
are shown as the open bars in Figure 5a and b; in
this plot, the RCCSu values are set at zero, and the
relative peptide values and corresponding stan-
dard deviations of LACS values (from 10 runs at a
sampling ratio of 0.8) are shown by the horizontal
bars. Also plotted for each residue (Figure 4c) is

DRc¼½Dd13Ca��½Dd13Cb�
¼ ½13CaðRCCSpeptideÞ�13CaðRCCSLACSÞ�
�½13CbðRCCSpeptideÞ�13CbðRCCSLACSÞ�

ð4Þ

These DRc values show a higher sensitivity to the
secondary structure than either Dd13Ca or Dd13Cb

alone (Metzler et al., 1996). Almost half of the 17

amino acids showed DRc values near to or greater
than 1 ppm.

Random coil chemical shifts derived from the
maximum entropy approach

In our alternative to the ‘‘adaptive LACS’’ ap-
proach, the mean of the central Gaussian from the
full set of data for each amino acid type (see
supplementary material for figures) was used to
derive a separate set of values, RCCSmax-ent
(Table 2). When compared with RCCSpeptide val-
ues derived from small peptide chemical shifts
(Wishart et al., 1995), the mean absolute deviation
was below experimental error. This correspon-
dence suggests that the full set of chemical shift
data are biased by the conformational preferences
of the amino acid type, just as are experimental
data from short peptides.

Relationship with residue intrinsic folding
propensity

If we consider the RCCSu values as true random
coil chemical shifts, then they can be used to
determine secondary chemical shifts for the
GGXAGG peptides. When this was done

Figure 2. Random coil chemical shifts determined by the adaptive LACS approach for 13Ca and 13Cb of alanine (a and b) and 13Ca

and 13Cb of valine (c and d) are plotted against the iteration number. A solid line segment connects mean values from each iteration.
The standard deviations for each iteration are shown as vertical bars. The converged values are taken as unbiased random chemical
shift values (RCCSu).
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(Figure 5), the [Dd13Ca ) Dd13Cb] values were
found to correlate with literature values for PII/b-
strand preferences of these amino acids (Fleming

et al., 2005). The natural PII/b-strand preference
was calculated from a coil library consisting of
non-a-helix, non-b-strand, and non-b-turn frag-
ments extracted from the Protein Data Bank
(Berman et al., 2000). This coil library excluded b-
turns, which were present in earlier coil libraries
(Swindells et al., 1995; Avbelj and Baldwin, 2003).
The goal in building a coil library was to examine
the intrinsic residual preferences for /,w confor-
mations in the absence of the complicated range of
interactions that stabilize secondary structures.
Given the large number of proteins in this coil
library, the effects of non-local interactions in
individual protein structures are expected to be
averaged out. Figure 5 clearly shows that a more
positive secondary chemical shift (DRc) implies
higher PII preference and a more negative sec-
ondary chemical shift indicates higher b-strand
preference. The fitted line is meant to show the
trend rather than to imply a linear relationship.
The largest outlier is histidine, which shows a large
secondary chemical shift but a low PII preference.

Figure 3. Standard deviations (ppm) of the calculated random
coil chemical shifts (expressed as the difference, (d13Ca ) d13Cb)
determined by the adaptive LACS approach for 17 amino acids
(20 standard amino acids with the exclusion of G, C, and P)
plotted as a function of the sampling ratio.

Figure 4. Solid bars indicate differences between random coil chemical shift values measured experimentally from the family of
peptides GGXAGG at 25 �C and pH 5.0 (Wishart et al., 1995) (RCCSpeptide) and the unbiased random coil chemical shifts derived
here (RCCSu) from statistical analysis of chemical shifts from a subset of RefDB (Zhang et al., 2003). The horizontal bars indicate the
standard deviations from analysis of 20 runs at a sampling ration of 0.8 (see text). (a) Random coil chemical shift differences for 13Ca

for each amino acid. (b) Random coil chemical shift differences for 13Cb for each amino acid. (c) Differences between each of the above
values.
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Dependence of RCCSu values on pH

The anomalous behavior of the histidine RCCSu
values may be explained by known pH effects on

histidine d13Ca and d13Cb values (Richarz and
Wuthrich, 1978). Figure 6 shows the distribution
of pH values at which the histidine 13Ca and 13Cb

chemical shifts in RefDB were recorded. The
majority of the data were collected in the pH range
(6–7) in which d13Ca and d13Cb of histidine (side
chain pKa = �6.5) exhibit a large pH dependence.
By considering the data as a whole, the resulting
RCCSu values for histidine can considered as an
average for pH �6.5. Because the peptide data
were collected at a significantly lower pH (pH 5),
this difference may explain why the Dd13Cb value
for histidine is particularly large (Figure 4b) and
why it appears as an outlier when plotted as a
function of the PII/b-strand preference (Figure 5).
The experimental data in RefDB, however, are
insufficient to determine accurate pH-dependent
RCCSu values for histidine 13Ca and 13Cb.

Conclusions

We have presented a probabilistic model for ran-
dom coil chemical shift values of 13Ca and 13Cb

nuclei of amino acids in peptides and proteins. Our
basic model, which is based on the assumption of

Table 2. Similarity of random coil chemical shift values for common amino acids derived from maximum entropy analysis

(RCCSmax-entÞa and from experimental chemical shifts of small peptides (RCSSpeptide)
b

Amino

acid

RCCSmax-entd
13Ca RCSSpeptided

13Ca ( RCCSmax-ent

�RCSSpeptideÞDd13Ca

RCCSmax�entd
13�Cb RCSSpeptided

13Cb ( RCCSmax-ent

�RCSSpeptideÞDd13Cb

Ala 52.7 52.5 0.2 19.4 19.1 0.3

Asp 54.3 54.2 0.1 40.9 41.1 )0.2
Glu 56.9 56.6 0.3 30.3 29.9 0.4

Phe 57.9 57.7 0.2 39.8 39.6 0.2

Ile 60.6 61.1 )0.5 39.1 38.8 0.3

Lys 56.5 56.2 0.3 33.1 33.1 0.0

Leu 55.2 55.1 0.1 42.5 42.4 0.1

Met 55.7 55.4 0.3 33.0 32.9 0.1

Asn 53.1 53.1 0.0 38.8 38.9 )0.1
Pro 63.1 63.3 )0.2 32.1 32.1 0.0

Gln 55.8 55.7 0.1 29.5 29.4 0.1

Arg 56.4 56.0 0.4 30.8 30.9 )0.1
Ser 58.7 58.3 0.4 63.9 63.8 0.1

Thr 62.0 61.8 0.2 70.0 69.8 0.2

Val 61.9 62.2 )0.3 33.0 32.9 0.1

Trp 57.2 57.5 )0.3 29.8 29.6 0.2

Tyr 58.3 57.9 0.4 39.3 38.8 0.5

aDerived from the center of the central Gaussian distribution (see Figure 1s in Supplementary Materials).
bFrom chemical shift values of peptides (Wishart and Case, 2001).

Figure 5. Correlation between intrinsic PII / b-strand prefer-
ences for individual amino acids (PII, Fleming et al., 2005) and
the secondary chemical shifts (RCCSpeptide ) RCCSu) deter-
mined for 16 GGXAGG peptides (where X is each of the 20
common amino acids except for G, C, and P) on the basis of the
set of unbiased random coil chemical shifts derived here. Data
are from Table 1. Histidine (denoted by *) appears as an
outlier.
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three maximally entropic modes, shows very good
agreement with experimental observations. We
have developed an ‘‘adaptive LACS’’ procedure
for refining random coil chemical shifts to remove
bias from the conformational preferences of amino
acid residue types. The resulting unbiased random
coil chemical shift (RCCSu) values support a more
refined notion of random coil chemical shifts and
their propensities. The RCCSu values should pro-
vide a useful basis for predicting peptide and
protein secondary structure, including conforma-
tional preferences of residues in dynamically dis-
ordered regions. The model can also be used to
further probe the relationship of chemical shifts
and structural state. In this direction, we can use
additional chemical shift signals from other nuclei
and perform our analysis along extra chemical
shift dimensions in order to find consistent and
refined structural classifications.

In the analysis presented here, as a proof of
principle, we used RefDB (Zhang et al., 2003), an
independently derived database of chemical shifts
reference corrected on the basis of known struc-
tures. Having established the principle of unbiased
random coil chemical shifts, we have used the
RCCSu values described here as input to LACS
(Wang et al., 2005) to create a larger database of
offset-corrected chemical shifts corresponding to �
1800 BMRB entries: �300 with and �1500 with-
out corresponding 3D structures. This database of
chemical shifts is available from the NMRFAM
website at http://www.bija.nmrfam.wisc.edu/
MANI-LACS/uLACS.db.
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